109 research outputs found

    Distance Oracles for Time-Dependent Networks

    Full text link
    We present the first approximate distance oracle for sparse directed networks with time-dependent arc-travel-times determined by continuous, piecewise linear, positive functions possessing the FIFO property. Our approach precomputes (1+ϵ)(1+\epsilon)-approximate distance summaries from selected landmark vertices to all other vertices in the network. Our oracle uses subquadratic space and time preprocessing, and provides two sublinear-time query algorithms that deliver constant and (1+σ)(1+\sigma)-approximate shortest-travel-times, respectively, for arbitrary origin-destination pairs in the network, for any constant σ>ϵ\sigma > \epsilon. Our oracle is based only on the sparsity of the network, along with two quite natural assumptions about travel-time functions which allow the smooth transition towards asymmetric and time-dependent distance metrics.Comment: A preliminary version appeared as Technical Report ECOMPASS-TR-025 of EU funded research project eCOMPASS (http://www.ecompass-project.eu/). An extended abstract also appeared in the 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014, track-A

    Convex Hull Representations Of Models For Computing Collisions Between Multiple Bodies

    Get PDF
    In this paper, we consider a collision detection problem that frequently arises in the field of robotics. Given a set of bodies with their initial positions and trajectories, we wish to identify the first collision that occurs between any two bodies. or to determine that none exists. For the case of bodies having linear trajectories, we construct a convex hull representation of the integer programming model of S.Z. Selim and H.A. Almohamad [European Journal of Operational Research 119 (1) (1999) 121-129], and compare the relative effectiveness in solving this problem via the resultant linear program. We also extend this analysis to model a situation in which bodies move along piecewise linear trajectories, possibly rotating at the end of each linear segment. For this case, we again compare an integer programming approach with its linear programming convex hull representation, and exhibit the effectiveness of solving a sequence of mathematical programs for each time segment over a global programming scheme which considers all segments at once. We provide computational results to illustrate the effect of various numbers of bodies present in the collision scenarios, as well as the times at which the first collision occurs

    Convex Hull Representations Of Models For Computing Collisions Between Multiple Bodies

    Get PDF
    In this paper, we consider a collision detection problem that frequently arises in the field of robotics. Given a set of bodies with their initial positions and trajectories, we wish to identify the first collision that occurs between any two bodies. or to determine that none exists. For the case of bodies having linear trajectories, we construct a convex hull representation of the integer programming model of S.Z. Selim and H.A. Almohamad [European Journal of Operational Research 119 (1) (1999) 121-129], and compare the relative effectiveness in solving this problem via the resultant linear program. We also extend this analysis to model a situation in which bodies move along piecewise linear trajectories, possibly rotating at the end of each linear segment. For this case, we again compare an integer programming approach with its linear programming convex hull representation, and exhibit the effectiveness of solving a sequence of mathematical programs for each time segment over a global programming scheme which considers all segments at once. We provide computational results to illustrate the effect of various numbers of bodies present in the collision scenarios, as well as the times at which the first collision occurs

    Radar Pulse Interleaving For Multi-Target Tracking

    Get PDF
    In a multifunction radar, the maximum number of targets that can be managed or tracked is an important performance measure. Interleaving algorithms developed to operate radars exploit the dead-times between the transmitted and the received pulses to allocate new tracking tasks that might involve transmitting or receiving pulses, thus increasing the capacity of the system. The problem of interleaving N targets involves a search among N! possibilities, and suboptimal solutions are usually employed to satisfy the real-time constraints of the radar system. In this paper, we present new tight 0-1 integer programming models for the radar pulse interleaving problem and develop effective solution methods based on Lagrangian relaxation techniques

    Radar Pulse Interleaving For Multi-Target Tracking

    Get PDF
    In a multifunction radar, the maximum number of targets that can be managed or tracked is an important performance measure. Interleaving algorithms developed to operate radars exploit the dead-times between the transmitted and the received pulses to allocate new tracking tasks that might involve transmitting or receiving pulses, thus increasing the capacity of the system. The problem of interleaving N targets involves a search among N! possibilities, and suboptimal solutions are usually employed to satisfy the real-time constraints of the radar system. In this paper, we present new tight 0-1 integer programming models for the radar pulse interleaving problem and develop effective solution methods based on Lagrangian relaxation techniques

    An FPTAS for optimizing a class of low-rank functions over a polytope

    Get PDF
    We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of non-linear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme does not require the assumption of quasi-concavity on the objective function. For the special case of quasi-concave function minimization, we give an alternative FPTAS, which always returns a solution which is an extreme point of the polytope. Our technique can also be used to obtain an FPTAS for combinatorial optimization problems with non-linear objective functions, for example when the objective is a product of a fixed number of linear functions. We also show that it is not possible to approximate the minimum of a general concave function over the unit hypercube to within any factor, unless P = NP. We prove this by showing a similar hardness of approximation result for supermodular function minimization, a result that may be of independent interest

    An Iterative Scheme for Valid Polynomial Inequality Generation in Binary Polynomial Programming

    Full text link
    Semidefinite programming has been used successfully to build hierarchies of convex relaxations to approximate polynomial programs. This approach rapidly becomes computationally expensive and is often tractable only for problems of small sizes. We propose an iterative scheme that improves the semidefinite relaxations without incurring exponential growth in their size. The key ingredient is a dynamic scheme for generating valid polynomial inequalities for general polynomial programs. These valid inequalities are then used to construct better approximations of the original problem. As a result, the proposed scheme is in principle scalable to large general combinatorial optimization problems. For binary polynomial programs, we prove that the proposed scheme converges to the global optimal solution for interesting cases of the initial approximation of the problem. We also present examples illustrating the computational behaviour of the scheme and compare it to other methods in the literature
    corecore